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1  Introduction

Stochastic optimal control has become increasingly popular in economies and finance as a tool for mod-
elling optimising behaviour within an eavirenment of ongoing uncertainty. Its applications have been
numerous, some prominent examples being menu cost models of investment and the transactions demand
for money (see, for example, Constantinides and Richard 1978, Pindyck 1988, Smith 1980, Dixit 1991a
and Dixit and Pindyck 1894). This article considers the optimal impulse control of a Browntan motion
in the presence of holding costs and discrete costs of adjustment.

‘The contribution of the paper is threefold. First, the construction of the expected cost function for the
impulse control function is derived by treating the problem as a first-stopping (or absorption) problem,
followed by instantaneous restoration to an internal state. It is demonstrated that the expected costs
satisfy the Hamilton-Jacobi-Bellman equation in keeping with traditional methods of impulse control.
Second, the problem addressed by Dixit (1991b) is extended to deal with a more general class of Brownian
motion and control costs. The growing and decaying exponential soiutions that arise in Brownian motion
with constant drift and noise are replaced by more general functions but the analysis underlying the
optimal control problem is still applicable. Third, a numerical algorithm is developed to compute the
optimal bounds for a general Brownian motion that is restored to a fixed state. The procedure is
tested with reference to Dixit's (1991a) analytical approximation for Brownian motion with zero drift
and constant variance, constant barrier costs and holding costs proportional fo the square of the state.
Results are provided for non-zero drift and other specifications of barrier and holding costs.

2  Preliminaries

Consider a general Brownian motion z; that evolves according to the stochastic differential equation
{(SDE)
dz; = al{x;#)dt + b{x; 8) dW, z{0) =X . (1)

where dW is the increment in the Weiner process W,. This unrestricted process is now controlled by
barriers at = = { and « = u where I < u. When the process impinges on the lower barrier z = [, it is
instantaneously restored to the interior point 2 = L ab cost Ci{l, L). Similarly, when the upper boundary
@ = u is encountered, the process is instantaneously restored to the interior point = = U at cost O, (u, ).
The situation is illustrated in Figure 1. Additional costs of holding resource x are incurred at rate flx).
The problem is now to choose the parameters I, L, IV and 4 so as o minimise the expected present value
of the total cost starting with resource X given a discount rate 23

A solution of this problem was given by Dixit (1991b) who uniformly discretised the state space [I, 4] and
treated the SDE (1) as a discrete random walk defined on the discretised states. The costs incurred at the
boundaries @ = | and x = u as result of the restoration to z = L and z = I/ entered the analysis through
the forins for the transitional probabilities at the states corresponding to these points. The probability
distribution across states imposed a corresponding distribution in costs from which the expected present
value of all fufure costs couid be determined. By refining the discretisation, Dixit showed that the
expected cost F'(x) of starting at state 7 = X satisfied the Hamilton-Jacobi-Bellman (HIB) equation

i,
5 V()

d*F{z; 8)
da?

dF(z;#)
dx

a(x) = pF{z;0) + flz) =0, (2)
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. : Figure 1: The Brownian motion

: dr: = alz;0)dt + bz, 0)dW,

r e e e o e e T_f__';;:);f_____“ starting from ¢ = X is con-
s ; X : % : trolled by the upper barrier z =
S - i LDy w at which it is instantaneously
Ll bl o oL restored to ¢ = U and the lower

L S T AT T e barrier x = { at which it is in-

stantanecusly restored to ¢ = L.

subject to suitable boundary conditions. Dixit (1991a) also derived this equation by using Ito’s lemma,
thus circumventing the need to discretise the state space.

It is now proposed to derive this equation by treating the impulse control of the Brownian motion as
a first-stopping or absorption problem. The construction and subsequent analysis of the cost function,
however, will require some preliminary results from the theory underlying stochastic differential equations
of type (1). It is well known that the transitional probability density function p(z,t | X,0) of equation
(1) satisfies the forward Kolmogorov equation

Aplz, 1] X,0) lﬁz[bz(r)p(m,ti}f,O)] B ANalx)p(z,t] X, 0)]
at T2 Oz? dx ’

In subsequent analysis, it is useful to recognise that this equation can be re-expressed in the conservation
form

(3)

Oplr,t| X,0)  Oglx,t]| X,0)

ot dn =9 )
Self evidently, g{x, ¢ | X,0) is defined in terms of p(x, £ | X,0) by
fwnz-LQWﬁyunxm}muuyﬂxm (5)
I I 26:1: "p"?J 1 "p T 1

and is the flux of probability flowing in the positive x direction at time ¢ and state z. To appreciate
this definition, it is sufficient to observe that if [z1, rr] is a fixed interval of state space then the mass of
probability contained within this interval evolves in time according to the rule

i TR
:}f / pla, i X, 0 de = gz, t1 X,0) — gler, t1 X,0).

L
Closely related to the forward Kolmogorov equation (3) is the backward Kolmogorov equation

zt] X, 0)

+a{X) i e

Opla, t | X,0) _ %bﬂ(){) &p(z, 1| X,0) ()

ot dX*?

describing the behaviour of the transitional density fanction with respect to the initial state X. In terms
of the backward spatial operator

3y . O

1.5, . .
the backward Kolmogorov equation and the probability flux satisfy respectively
. Op{x, t1 X,0 Bq(z,t] X, 0
£ipto e x,0) = IO gy 0 = HELDD ®)

3 The cost function

Consider now the situation in which the process described by SDE (1) is controlied by two absorbing
barriers at z = | and z = u where [ < u. The transitional density function p{x, ¢ | X, 0) for this absorption
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process, conditional on o{0) = X, may be obtained by solving Kolmogorov’s equation {3) in the region
{x,t) € {I,u)} x {0, ) with boundary conditions

plL, ] X,0)=0,  pu,t]X,0)=0 (9)

and initial condition

e, 01X, 0) =38z - X). (i)
The differential equation satisfied by the expected cost function will now be determined by partitioning
costs as follows:
{a} expected discounted holding costs for processes prior to their absorption;

{b) expected discounted cost of exercising control at the upper barrier » = u, including all subsequent
costs, F{U7), which necessarily follow as a consequence of this action;

{¢) expected discounted cost of exercising control at the lower barrier o = [, including all subssquent

costs, F(L).

The expected cost of starting at state X is therefore given by

Fxy = [ e ( [ et x.0)e) ar

+ /w e rt [Cu(u,U} + F(U)} glu,t | X,0)dt (11)
40
- / 7 [Ci(l,L) + F(L)} gll,t] X,0)dt

Tt is now demonstrated that F(X) satisfies the HIB equation (2). Applying the operator £ to equation
{11) vields

creo) = [T e ([ rocnier xona) a
+ [Cu(u, Ui+ F(U)] /O“X’ e Liglu,t | X,0) dt (12)
~[eutt, £y + F(L) /m e P Llgll ¢ ] X.0)]dt
0

where it is understood that all derivatives in £ are total when applied to F{X). Since

Clp(et] X,0)] = w |
| (13)

r?r '

LEX) = / (/ e ‘f’” X.0) d,g) dr

+ [C.u(u, Uy F(U}] / gt 9qlu,t ] X,0) dt {14)
o 8t

Gg(l,t 1 X,0)

Llglu,t | X, 0)] = B

Ligll,t 1 X,0)] =

then

e Bgllie XL, 0)
-— L H pt '*"'*"ﬁ""*‘**""****"‘*ﬁ*'q ! ! .
{cl(sz) + F(I)} /D e S dt
Using integration by parts, equation (14) can be reworked into the format
P = = [ m(e0) 50 dt - [Cun, )+ P .01 X0

| ) (15)
+{Cull, 1)+ F(LY] 1,0} X,0)+ pF(X)
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Since p(£,0| X,0) = d(£ = X) and g(u, 0| X,0) = ¢(1,0| X,0) = 0 then F(X} is seen to satisfy the HIB
equation

1, d*F dF :

(X)) —— + (X)) = - pF A)y=0.

5 P(X) 5 + alX) 7 = pF + F(X) =0 (i6)
The boundary conditions to be satisfied by F are obtained directly from equation {11), applied at the
upper and lower barriers. These are the familiar value-matching conditions

Flu) = Cu{u,U) + F(U) | F(l) = Cy(l, 1) + F(L) . (17)

Therefore the final formulation of the problem based on absorption methods is identical to that which
arises using the traditional methods of impulse contral.

4 Optimal choice of parameters

It is evident from {16) and conditions (17) that the final solution for F (X} contains X and four parameters
I, I, U and u which must be chosen to minimise £, Let V{x} be the cost function, in the absence of
controls, for all processes starting at state & then

Vizg) =R [/000 e P () dt] (18}

The general solution of {16) may be expressed in the form
Flx) = Dyv{z) + Dyw(x) + Vi) (19)

where D)y and Dy are arbitrary constants to be determined from the boundary conditions (17) and ¢ and
w are two independent solutions of the homogeneous equation

1 d* () )

.—2—5“’(37) e + a{r)

dep(x
dx

— pla) = 0. {20)
In particular, v{x) and w{z) can be found so that

(a} ©v{x} is a strictly increasing solution of (20) satisfying v(l) = 1;

(b) w{x} is a strictly decreasing positive sofution of (20} satisfying w{l} = 1.

These claims will be discussed later bat are consistent with the increasing and decreasing exponential
solutions found by Dixit (1991b) for equation (20) when a(z) and b{) are constant functions.

4.1 Derivation of the smooth-pasting conditions

The conditions (17) now indicate that Dy and Ds are to be found by solving the simultaneous equations

Dy {e{ly — v(L)] + D, lw(l) —w(L)] = G, L) -V{)+ VL),

. (21)
Dy [v(u) = o(U}] + Dy [wlu) — w(l o= CuluU) =V +V{U).
Let auxiliary variables Z| and Z, be defined by
2y =Gl Ly -V + V(L) Zy = Cyp{u, U) = Vi{u) + V{U) (22)
then equations (21) can be solved for Dy and Dy to give
D = ??147(21 wiw) = w(l)] - Zofuwll) - w(L)))
(23)
I .
Dy, = W( — Zyu(w) - vU)] + Zafo(d) — v(L)])

where |A] = [o(l) — v{L)][w(u) — w(U)] - f(u) ~ (U w(l) - w(L)] is the determinant of the matrix of
the Hinear system (21). Knowledge of Dy and D, allows the cost function F to be expressed in terms of
the initial state = and the parameters {, L, U and u. It is required to optimise F by judicious choice of
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. L, U and u. To illustrate the general procedure, consider the variation of F with respect to u with o,
£, Loand U7 held constant. Clearly

JF 3D, a0, )
du  u vlz) + Au wlz) - 24)
By differentiating the first of equations {21) with respect to u, it is clear that
ap ODy
&u’ () —o(L)] + 5 [w{l) ~w(L)] =0

from which it now follows that

fw{l) — ':U(L)]%—g = %Z—l (v(r){w(n’) —w(L)] ~ wiz) [w(l) ~ ’U(L)]) .

Since v is a positive increasing function and w is a positive decreasing function over [I,ul, then the
products v{z}w(l) — w(L)} and —w{z)jv(l) - v{L}] are both positive. Therefore GF[0u = 0if and only if
00 /du = 0. Consequently the stationary points of £ with respect to variations in « may be determined
by solving 0D; /0u = 0 (or equivalently, 8D2/du = 0). Straightforward calculation gives

aD;  wll) —w(L) (D dvfi) D dw{u} OO0, (u, 1) N dl—’(u))
1 2 -

dun 14 du ° du Ou du
s0 that a0 o) dw(u)  OC.(uU) 1V ()
1 dv{u cdw(u) 90 (u, AV ()
Au 0 = Db du + D du O T Tde 0
However OF (w31, L, U, u) do(z) () W)
£l Ly Uyu) vl ‘ aw{r av{e
ax T D dx * dz
and therefore
o GF {1, L, U, u) aC, (u, U)
—_— =) = . (25)
du Oz e Du

This completes the formal derivation of one of the familiar smooth-pasting conditions from the value
matching conditions {17). A similar analysis reveals that the three remaining conditions are:

A0, JF{x; 1, L, U u) A, (u, U)

il S T AT AT )

oy =V s L ST (26)
aD; OF (z1, L, U, u) _AC{I, L) 5
E A = T (27)
@DJ ("}F(CL’;J,L,U,U) GCJ{ZL)

GH oFfml L Uu) _ 0G{LL) 5
7 e . aL (28)

4.2  Properties of v(z) and w(x)

The general proof of optimality relies on the facts that v(x) and w{z) are positive solutions of {20}, the
first. being an increasing function of = and the second being a decreasing function of z. Consider v(x)
first. It starts at v(l) = 1 with a positive gradient. Suppose that & = 1 > { is the first point at which the
gracient of v is zero, then v (7)) < 0 since the gradient is decreasing in the vicinity of 5. But v(s) > 0
and therefore the requirement that v(z) satisfies (20) at z = n leads immediately to a contradiction since

Avin) &u(n)
An? a(n) n on?

1 1.,
0= 56 = po(n} = 5 5%(n) = pu(n) < 0.

‘Therefore vz} is a positive Increasing function of .

The argnment for w{z) is more subtle. It is first recognised that every function w(x) satisfying w({l) = 1
with ww'{I) < 0 remains positive under all circumstances. To appreciate this fact, suppose that o = 7 is
the first point at which w'{5) = 0 so that w(z) has decreased monotonically prior to = 7 and therefore
w"{n} = 0. However w{x) satisfies (20) at © = 5 and so

1, ; Fw(n) e (1)

s b {n) 8*v(n)
52‘) {m e aln) B —tL >0,

0=
20 On* ~—

— pwln) = win) =
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If w(n) > 0 then w"{n) > 0 and w'(z) is increasing at = = 7. The argument appiied to v now indicates
that w{z) increases monotonically for z > n. This establishes the fact that w{x) is aiways positive. The
reason why the function increases is that the particular solution contains a component of v(x) which
dominates for large x. There will, however, be a unique negative gradient for which this component iy
inactive and in this case w(z) will decrease monotonically to 0 as 2 -+ oo; in effect n = oo.

5 Numerical computation of optimal barriers

To illustrate the procedure by which the optimal barriers may be obtained, it is convenient to consider
the simplest situation in which restoration is to a fixed peint x = R. It is now required to determine the
lower boundary & = [ and the upper boundary @ = u, so as to minimise expected total costs F{x). The
optimal barriers are found by solving

W (z) &*F dF

5 T + alx) T —pF 4 flo) =0 (29)
subject to the requirements
1r ol R
F(l) — F(R) = C/{, R) il 1 = -—L(———} (30)
di 1, al
on the lower boundary and
1F S0, (u, R
Flu) ~ F(R) = Cu(u, R) ar) - _ 9w B) (31)
du |, Ju

on the upper boundary. The numerical algorithm proceeds as follows. Equation (29) is converted into
the first-order system

dyy dyz 2oy ~ flz) ~ ays)
L & 2 ! 32
dr 2 dx B (32)

where g1 and e are defined in terms of I by

dr

de

y = Flz), Yo = (33)
Now notice that (307 and (31) specify four conditions, two of which would be sufficient to solve {29}; the
other two are satisfied only by the optimal choice of [ and u. Essentially the problem may be regarded
as one in which two functions (in this instance defined by two boundary conditions) in two unknowns (/
and u) are to be solved. In general, this is an awkward problem. The proposed methodology uses the
houndary coneitions to construct an analytic function, T'(z), of the complex variable z = [ + iu. Figure
2 describes the numerical algorithm when boundary conditions on = = u are used to construct T(z}. To
be specific

dF{u) BCu{u,R))

du O (34)

T(z) = (F(u) — F(R) - Cylu, R)) + f(
The computation of T(z) is done in two stages. In the first stage of the calculation, equations (32) are
integrated from the lower boundary = = [ to x = R, the point of restoration. In order to satisfy conditions
(30), F(1) is guessed initially and this guess is taken as the starting value for y;. The starting value for
if2 18 already known from (30}, By systematically changing #(1) {for example, using the sccant algorithm
described below in the complex case), a value for F(1) is found for which the integrated solution to
equations {32) satisfies condition (30). On the successful completion of this first stage, F'(R) and dF/dR
are determined and become the initial conditions for the integration of the differential equations (32)
from x = R to the upper barrier © = u. On completion of this second integration, the resulting values of
F{u) and dF/du are used to calculate T'(z) from (34). Recall that only the optimal boundaries satisty
T(z) = {; other choices of z make T'(z) non-zero.

The salution of T{z) = ¢ is found using the secant algorithm but applied to a complex function. Suppose
that z; and zy are two choices for the optimal barriers, then the secant algorithm gives
Tg(Zg - Zl)

T, T, {35)

Znew T A2 T

as an improved estimate for the solution of T'(z) = 0 where 7% = T{z) and Ty = T(22). This estimate is
aceepted as opiimal provided two sequential estimates z; and z. are sufficlently close, or the algorithm
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Success Initialisation
Accept zz = I41u as the 1st entry Oulput guess 21 = { + 41y <
optimal bounds. 2nd entry  Qutput guess 2» = [z + fua
A
L
S
v
Conveargence Iaput: 2 =1+ du A
Inputs: Pair (z;.71) and Step 1 Take & = F{) = (U, R). |nte-
22 grate HIB equation to get ¢ = F{I)—
Qutputs: If iz — 22| is F{R} — Cy{I, R},
small then stop otherwise Step 2 Take ex = F(I} = 20{L, R). Inte-
output zz and caleulate grate HIB equation o get ¢ = F{l)—
new Ty Ry - Cy(d, ).
Step 3 Usc sccant algorithm based on (eq, ¢1)
and (ez,¢2) to enforce F({} — F(R) =
y Ci{l, R).
N Step 4 Tntegrate B equation to = = «
starting with F(R) and F'(R)} ob-
Secant tained from step 3.
Inputs: Bstirnatos Step & (zg);'f: {r (uB}C"- 1' {IQ —6("“(“' B))
{21, Ty) and (23, T2) A+ F (u] — 8Cu(u, R}/ du).
Outputs: A new zp with Cutput: T(z) A
{¢1,T1] replaced by old
(22,15}
A
v
Mo First iteration 7 Yes

Figure 2: The global structure of the nuwmerical procedure to estimate the optimal barriers
¢ = ! and £ = w for a controlled Brownian motion that is restored instantaneously from the
bamiersz =lorz=utoz = R.

continues. In the latter case, 2y and 7' are discarded and replaced by 25 and Ty. The old value of 2
is now replaced by zpew and the corresponding value for T3 is recomputed. The algorithm converges
effectively and delivers the optimal boundaries [ and u efficiently.

Specimen numerical calculations were carried out for the Brownian motion

in which g and ¢ take constant values. All calculations assume that future costs are discounted at vate
p = 0.05. Darrier costs C{w, U} and Cy{l, L) were chosen to be
Colu, Yy =G+ Blu-U), Cl,L)=G+ B(L-1)

with G = 0.01 and B = 0.01 while holding costs were modelled by fi{z) = kx? in the first application
and fa{z) = klz} in the second application with £ = 0.1 in both instances. As an initial cheeck of the
nunterical algorithm, the optimal bounds for the restore-te-zero problem in the absence of drift, 4, and
proportional transaction costs, B, was ealculated. These barriers were compared with Dixit’s (1991b)
well known estimate h = (6a>G/k)'/* based on the premise that the optimal barriers are symmetrical
about zero, the point of restoration. For ¢ = 0.05 and o = 0.1, the numerical estimates are 0.2045
and 0.2838 respectively. Although not constrained to be symmetrical in the numerical computation, the
optimal barriers do in fact exhibit symmetry. The numerical estimates compare very favourahbly with
0.1968 and 0.2783 from Dixit’s approximate formula.

[Figure 3 illustrates the behaviour of the optimal estimates for pp € [0.0,0.1] and all other parameters
taking the values specified previously. Clearly the optimal barriers in the presence of drift are no longer
symmetrical, Both examples indicate that, in the presence of positive drift, the lower barrier is sub-
stantiafly relaxed while the upper barrier is relatively more tight. At first sight this Iatter result may
appear counter intuitive, in the respect that the upper barrier is encountered more frequently resulting
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4 Upper barrier
TR S pprebamE file) = ka?
ok Falz) = Kzl Figure 3: Optimal up-
per and lower barri-
0.1+
ers are shown for the
* } b t > U holding costs fi{z) =
o 002 0.04 0.08 0.08 0.10 kr? and fole) =kl
Lk as pu ranges through
- [0.0,0.1]. These cal-
IR R N folz) = kx| culations assume @ =
0.4 4 Tl . B=1001,¢=401and
) Luwer barrier Treal .. p = 0.05.
—L5 ] filz) = bt

in increased control costs, However, the positive drift will imply rapidly rising holding costs if the upper
barrier were relaxed. There is also evidence to suggest that the dependence of the upper barrier on p
is consistent with the familiar polynomial-like behaviour found by Baumal] (1952) and Miller and Orr
{1966). Although not illustrated in Figure 3, the effect becomes more pronounced as drift increases.
This ts 1o be expectad since the problem becomes more determministic for large values of . Finally, the
choice of fo{z) = klxl 18 more punitive a specification of holding cost than fi{z) = kx® for small 7.
Consequently, the barriers for f; are tighter than those for fi.

6 Conclusion

Tlis article has described how the optimal impulse control of Brownian motion can be treated as an
absorption problem. Tt is demonstrated that the expecied cost function ohtained by this means satisfies
rhe farniliar Hamilton-Jacobi-Bellman equation. Furthermore, the value-matching conditions are shown
to lead uaturally te the smooth-pasting cenditions for optimal control of the class of Brownian motion
considered here. A numerical procedure is proposed to investigate the behaviour of optimal barriers in
general problems where symmetry cannot be assumed. The results obtained from the application of the
algorithm are in agreement with those derived from existing analytical selutions. In the reported results
for problems where such solutions are difficult to obtain or non-existent, the numerical solutions behave
sensibly and accord with existing intuition.
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